3.549 \(\int (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2 \, dx\)

Optimal. Leaf size=149 \[ \frac{2 e^2 \left (7 a^2+2 b^2\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d \sqrt{e \cos (c+d x)}}+\frac{2 e \left (7 a^2+2 b^2\right ) \sin (c+d x) \sqrt{e \cos (c+d x)}}{21 d}-\frac{18 a b (e \cos (c+d x))^{5/2}}{35 d e}-\frac{2 b (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))}{7 d e} \]

[Out]

(-18*a*b*(e*Cos[c + d*x])^(5/2))/(35*d*e) + (2*(7*a^2 + 2*b^2)*e^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2
])/(21*d*Sqrt[e*Cos[c + d*x]]) + (2*(7*a^2 + 2*b^2)*e*Sqrt[e*Cos[c + d*x]]*Sin[c + d*x])/(21*d) - (2*b*(e*Cos[
c + d*x])^(5/2)*(a + b*Sin[c + d*x]))/(7*d*e)

________________________________________________________________________________________

Rubi [A]  time = 0.164014, antiderivative size = 149, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 25, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.2, Rules used = {2692, 2669, 2635, 2642, 2641} \[ \frac{2 e^2 \left (7 a^2+2 b^2\right ) \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d \sqrt{e \cos (c+d x)}}+\frac{2 e \left (7 a^2+2 b^2\right ) \sin (c+d x) \sqrt{e \cos (c+d x)}}{21 d}-\frac{18 a b (e \cos (c+d x))^{5/2}}{35 d e}-\frac{2 b (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))}{7 d e} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cos[c + d*x])^(3/2)*(a + b*Sin[c + d*x])^2,x]

[Out]

(-18*a*b*(e*Cos[c + d*x])^(5/2))/(35*d*e) + (2*(7*a^2 + 2*b^2)*e^2*Sqrt[Cos[c + d*x]]*EllipticF[(c + d*x)/2, 2
])/(21*d*Sqrt[e*Cos[c + d*x]]) + (2*(7*a^2 + 2*b^2)*e*Sqrt[e*Cos[c + d*x]]*Sin[c + d*x])/(21*d) - (2*b*(e*Cos[
c + d*x])^(5/2)*(a + b*Sin[c + d*x]))/(7*d*e)

Rule 2692

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> -Simp[(b*(g
*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1))/(f*g*(m + p)), x] + Dist[1/(m + p), Int[(g*Cos[e + f*x])^
p*(a + b*Sin[e + f*x])^(m - 2)*(b^2*(m - 1) + a^2*(m + p) + a*b*(2*m + p - 1)*Sin[e + f*x]), x], x] /; FreeQ[{
a, b, e, f, g, p}, x] && NeQ[a^2 - b^2, 0] && GtQ[m, 1] && NeQ[m + p, 0] && (IntegersQ[2*m, 2*p] || IntegerQ[m
])

Rule 2669

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[(b*(g*Cos[
e + f*x])^(p + 1))/(f*g*(p + 1)), x] + Dist[a, Int[(g*Cos[e + f*x])^p, x], x] /; FreeQ[{a, b, e, f, g, p}, x]
&& (IntegerQ[2*p] || NeQ[a^2 - b^2, 0])

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2642

Int[1/Sqrt[(b_)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[Sqrt[Sin[c + d*x]]/Sqrt[b*Sin[c + d*x]], Int[1/Sqr
t[Sin[c + d*x]], x], x] /; FreeQ[{b, c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int (e \cos (c+d x))^{3/2} (a+b \sin (c+d x))^2 \, dx &=-\frac{2 b (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))}{7 d e}+\frac{2}{7} \int (e \cos (c+d x))^{3/2} \left (\frac{7 a^2}{2}+b^2+\frac{9}{2} a b \sin (c+d x)\right ) \, dx\\ &=-\frac{18 a b (e \cos (c+d x))^{5/2}}{35 d e}-\frac{2 b (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))}{7 d e}+\frac{1}{7} \left (7 a^2+2 b^2\right ) \int (e \cos (c+d x))^{3/2} \, dx\\ &=-\frac{18 a b (e \cos (c+d x))^{5/2}}{35 d e}+\frac{2 \left (7 a^2+2 b^2\right ) e \sqrt{e \cos (c+d x)} \sin (c+d x)}{21 d}-\frac{2 b (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))}{7 d e}+\frac{1}{21} \left (\left (7 a^2+2 b^2\right ) e^2\right ) \int \frac{1}{\sqrt{e \cos (c+d x)}} \, dx\\ &=-\frac{18 a b (e \cos (c+d x))^{5/2}}{35 d e}+\frac{2 \left (7 a^2+2 b^2\right ) e \sqrt{e \cos (c+d x)} \sin (c+d x)}{21 d}-\frac{2 b (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))}{7 d e}+\frac{\left (\left (7 a^2+2 b^2\right ) e^2 \sqrt{\cos (c+d x)}\right ) \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{21 \sqrt{e \cos (c+d x)}}\\ &=-\frac{18 a b (e \cos (c+d x))^{5/2}}{35 d e}+\frac{2 \left (7 a^2+2 b^2\right ) e^2 \sqrt{\cos (c+d x)} F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{21 d \sqrt{e \cos (c+d x)}}+\frac{2 \left (7 a^2+2 b^2\right ) e \sqrt{e \cos (c+d x)} \sin (c+d x)}{21 d}-\frac{2 b (e \cos (c+d x))^{5/2} (a+b \sin (c+d x))}{7 d e}\\ \end{align*}

Mathematica [A]  time = 1.14132, size = 115, normalized size = 0.77 \[ \frac{(e \cos (c+d x))^{3/2} \left (20 \left (7 a^2+2 b^2\right ) F\left (\left .\frac{1}{2} (c+d x)\right |2\right )+\sqrt{\cos (c+d x)} \left (5 \left (28 a^2+5 b^2\right ) \sin (c+d x)-3 b (28 a+5 b \sin (3 (c+d x)))-84 a b \cos (2 (c+d x))\right )\right )}{210 d \cos ^{\frac{3}{2}}(c+d x)} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cos[c + d*x])^(3/2)*(a + b*Sin[c + d*x])^2,x]

[Out]

((e*Cos[c + d*x])^(3/2)*(20*(7*a^2 + 2*b^2)*EllipticF[(c + d*x)/2, 2] + Sqrt[Cos[c + d*x]]*(-84*a*b*Cos[2*(c +
 d*x)] + 5*(28*a^2 + 5*b^2)*Sin[c + d*x] - 3*b*(28*a + 5*b*Sin[3*(c + d*x)]))))/(210*d*Cos[c + d*x]^(3/2))

________________________________________________________________________________________

Maple [B]  time = 1.028, size = 343, normalized size = 2.3 \begin{align*} -{\frac{2\,{e}^{2}}{105\,d} \left ( -240\,{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{8}-336\,ab \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{7}+360\,{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}+140\,{a}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+504\,ab \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{5}-140\,{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+35\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){a}^{2}+10\,\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ){b}^{2}-70\,{a}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-252\,ab \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{3}+10\,{b}^{2}\cos \left ( 1/2\,dx+c/2 \right ) \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}+42\,\sin \left ( 1/2\,dx+c/2 \right ) ab \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}e+e}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(3/2)*(a+b*sin(d*x+c))^2,x)

[Out]

-2/105/sin(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^2*e+e)^(1/2)*e^2*(-240*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2
*c)^8-336*a*b*sin(1/2*d*x+1/2*c)^7+360*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6+140*a^2*cos(1/2*d*x+1/2*c)*
sin(1/2*d*x+1/2*c)^4+504*a*b*sin(1/2*d*x+1/2*c)^5-140*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4+35*(sin(1/2*
d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*a^2+10*(sin(1/2*d*x
+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*b^2-70*a^2*cos(1/2*d*x
+1/2*c)*sin(1/2*d*x+1/2*c)^2-252*a*b*sin(1/2*d*x+1/2*c)^3+10*b^2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2+42*si
n(1/2*d*x+1/2*c)*a*b)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (e \cos \left (d x + c\right )\right )^{\frac{3}{2}}{\left (b \sin \left (d x + c\right ) + a\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(3/2)*(a+b*sin(d*x+c))^2,x, algorithm="maxima")

[Out]

integrate((e*cos(d*x + c))^(3/2)*(b*sin(d*x + c) + a)^2, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (-{\left (b^{2} e \cos \left (d x + c\right )^{3} - 2 \, a b e \cos \left (d x + c\right ) \sin \left (d x + c\right ) -{\left (a^{2} + b^{2}\right )} e \cos \left (d x + c\right )\right )} \sqrt{e \cos \left (d x + c\right )}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(3/2)*(a+b*sin(d*x+c))^2,x, algorithm="fricas")

[Out]

integral(-(b^2*e*cos(d*x + c)^3 - 2*a*b*e*cos(d*x + c)*sin(d*x + c) - (a^2 + b^2)*e*cos(d*x + c))*sqrt(e*cos(d
*x + c)), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(3/2)*(a+b*sin(d*x+c))**2,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \left (e \cos \left (d x + c\right )\right )^{\frac{3}{2}}{\left (b \sin \left (d x + c\right ) + a\right )}^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(3/2)*(a+b*sin(d*x+c))^2,x, algorithm="giac")

[Out]

integrate((e*cos(d*x + c))^(3/2)*(b*sin(d*x + c) + a)^2, x)